Cyclically k-partite digraphs and k-kernels
نویسندگان
چکیده
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. A digraph D is cyclically k-partite if there exists a partition {Vi} i=0 of V (D) such that every arc in D is a ViVi+1-arc (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through the lengths of directed cycles and directed cycles with one obstruction, in addition we prove that such digraphs always have a k-kernel. A study of some structural properties of cyclically k-partite digraphs is made which bring interesting consequences, e.g., sufficient conditions for a digraph to have k-kernel; a generalization of the well known and important theorem that states if every cycle of a graph G has even length, then G is bipartite (cyclically 2-partite), we prove that if every cycle of a graph G has length ≡ 0 (mod k) then G is cyclically k-partite; and a generalization of another well known result about bipartite digraphs, a strong digraph D is bipartite if and only if every directed cycle has even length, we prove that an unilateral digraphD is bipartite if and only if every directed cycle with at most one obstruction has even length. keywords: digraph, kernel, (k, l)-kernel, k-kernel, cyclically k-partite. AMS Subject Classification: 05C20.
منابع مشابه
On the existence of (k, l)-kernels in infinite digraphs: A survey
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k− 1)-kernel. This work is a survey of results proving sufficient conditions for the exist...
متن کاملOn the existence of kernels and h-kernels in directed graphs
Galeana-Sanchez, H., On the existence of kernels and h-kernels in directed graphs, Discrete Mathematics 110 (1992) 2.51-255. A directed graph D with vertex set V is called cyclically h-partite (h > 2) provided one can partition V = V, + V, +. . + V,_, so that if (u, u) is an arc of D then u E V,, and u E v+, (notation mod h). In this communication we obtain a characterization of cyclically h-pa...
متن کاملk-kernels in multipartite tournaments
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. An m-partite tournament is an orientation of an m-partite complete graph. In this pap...
متن کاملSemi-evenly partite star-factorization of symmetric complete tripartite digraphs
We show that necessary and sufficient conditions for the existence of a semi-evenly partite star factorization of the symmetric complete tripartite digraph K~I,n2,n3 are (i) k is even, k 2 4 and (ii) nl = n2 = n3 == 0 (mod k(k -1)/3) for k == 0 (mod 6) and nl = n2 = n3 == 0 (mod k(k 1)) for k == 2,4 (mod 6).
متن کاملOn (k, l)-kernels in D-join of digraphs
In [5] the necessary and sufficient conditions for the existence of (k, l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k, l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 31 شماره
صفحات -
تاریخ انتشار 2011